Regular Steinhaus graphs of odd degree
نویسنده
چکیده
A Steinhaus matrix is a binary square matrix of size n which is symmetric, with diagonal of zeros, and whose upper-triangular coefficients satisfy ai,j = ai−1,j−1+ai−1,j for all 2 6 i < j 6 n. Steinhaus matrices are determined by their first row. A Steinhaus graph is a simple graph whose adjacency matrix is a Steinhaus matrix. We give a short new proof of a theorem, due to Dymacek, which states that even Steinhaus graphs, i.e. those with all vertex degrees even, have doubly-symmetric Steinhaus matrices. In 1979 Dymacek conjectured that the complete graph on two vertices K2 is the only regular Steinhaus graph of odd degree. Using Dymacek’s theorem, we prove that if (ai,j)16i,j6n is a Steinhaus matrix associated to a regular Steinhaus graph of odd degree then its sub-matrix (ai,j)26i,j6n−1 is a multi-symmetric matrix, that is a doubly-symmetric matrix where each row of its upper-triangular part is a symmetric sequence. We prove that the multi-symmetric Steinhaus matrices of size n whose Steinhaus graphs are regular modulo 4, i.e. where all vertex degrees are equal modulo 4, only depend on ⌈ n 24 ⌉ parameters for every even number n, and on ⌈ n 30 ⌉ parameters in the odd case. This result permits us to verify the Dymacek’s conjecture up to 1500 vertices in the odd case.
منابع مشابه
Parity-regular Steinhaus graphs
Steinhaus graphs on n vertices are certain simple graphs in bijective correspondence with binary {0,1}-sequences of length n−1. A conjecture of Dymacek in 1979 states that the only nontrivial regular Steinhaus graphs are those corresponding to the periodic binary sequences 110...110 of any length n − 1 = 3m. By an exhaustive search the conjecture was known to hold up to 25 vertices. We report h...
متن کاملThe Chinese Postman Problem in Regular Graphs of Odd Degree
The Chinese Postman Problem in a graph is the problem of finding a shortest closed walk traversing all the edges. In a (2r + 1)-regular graph, the problem is equivalent to finding a smallest spanning subgraph in which all vertices have odd degree. We establish a sharp upper bound for the solution in 3-regular graphs, characterize when equality holds, and conjecture the answer for general r.
متن کاملA universal sequence of integers generating balanced Steinhaus figures modulo an odd number
In this paper, we partially solve an open problem, due to J. C. Molluzzo in 1976, on the existence of balanced Steinhaus triangles modulo a positive integer n, that are Steinhaus triangles containing all the elements of Z/nZ with the same multiplicity. For every odd number n, we build an orbit in Z/nZ, by the linear cellular automaton generating the Pascal triangle modulo n, which contains infi...
متن کاملCERTAIN TYPES OF EDGE m-POLAR FUZZY GRAPHS
In this research paper, we present a novel frame work for handling $m$-polar information by combining the theory of $m-$polar fuzzy sets with graphs. We introduce certain types of edge regular $m-$polar fuzzy graphs and edge irregular $m-$polar fuzzy graphs. We describe some useful properties of edge regular, strongly edge irregular and strongly edge totally irregular $m-$polar fuzzy graphs. W...
متن کاملSkolem Odd Difference Mean Graphs
In this paper we define a new labeling called skolem odd difference mean labeling and investigate skolem odd difference meanness of some standard graphs. Let G = (V,E) be a graph with p vertices and q edges. G is said be skolem odd difference mean if there exists a function f : V (G) → {0, 1, 2, 3, . . . , p + 3q − 3} satisfying f is 1−1 and the induced map f : E(G) → {1, 3, 5, . . . , 2q−1} de...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete Mathematics
دوره 309 شماره
صفحات -
تاریخ انتشار 2009